Annotation and data mining for the analysis of alignment

Agnieszka Czoska & Maciej Karpiński Center for Speech & Language Processing AMU Poznań

Suggestions

- Annotation of relatedness (or relations) between speech units;
- Manual annotation of repeated gestures;
- Distance and alignment: replication of the analysis from Bergmann & Kopp (2012) with relatedness as distance measure;
- Features crucial for gesture repetition:
 Classification;
- Coocurrence of features: associations;

Relatedness

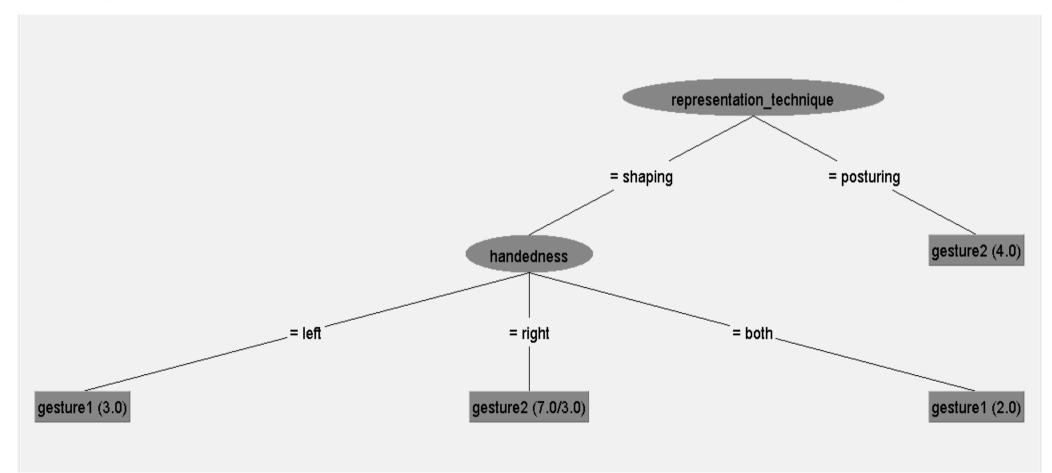
- Traum & Heeman (1997);
- Utterance units in dialogue can introduce completely new content (unrelated) or be related to a previous utterance of the interlocutor; distance is defined as the number of units between the related ones;
- Connected with given-new distinction and grounding both may affect alignment (strategic or higher-level alignment,;Kopp & Bergmann, 2013; Semin & Cacioppo, 2008; Mol, Krahmer, Maes & Swerts, 2011);
- Hypothesis: greater alignment between related than unrelated units; repetitions may be affected by the distance;

With relatedness...

- Replication of analysis schema from Bergmann & Kopp (2012); ANOVA with relatedness distance as a group variable;
- ... with manual annotation of repetitions...
- the easiest analysis will be Chi-squared test: number of repetitions and "unique" gestures coocurring with related and unrelated (new) units;

Manual annotation of repetitions

- "Expert system" approach;
- In a part of the data experts mark gestures that seem to be repeated accross the dialogue (within one speaker and between the speakers);
- From each dialogue annotation of the "original" gesture and its "copies" are extraxted…
- and analysed with classification algorithms (decision trees) to create a model of repetition;


Classification

- Class: gesture type (each repetition belongs to the same type as the "original" gesture);
- May provide a model of repetition: preservation of which features enables marking a gesture as a copy of a previous one;

handedness	handshape	palm and fingers	wrist movement	representation technique	class
left				shaping	gesture1
right				posturing	gesture2
both				shaping	gesture1
right				shaping	gesture2

Classification: decision tree

 Significance measure: accuracy of classification (succes rate, proportion of correct classifications);

Association

- Algorithms producing a set of rules indicating coocurrences between given values of all the variables measured;
- For the example analysed before:

```
handedness=left 3 ==>
representation_technique=shaping 3
conf:(1)
```

 Significance measure: confidence (conf): number of cases in the antecendent vs number of cases in the consequent; confidence=1 means 100% accuracy of the rule;

Association: what for?

- Data reduction (overlapping variables);
- May indicate relations omitted during stating hypotheses;
- Serves as a preliminary data analysis for eliminating hypotheses that are not supported;

Literature

- Bergmann K, Kopp S (2012). Gestural Alignment in Natural Dialogue. In: Proceedings of the 34th Annual Conference of the Cognitive Science Society (CogSci 2012). Cooper RP, Peebles D, Miyake N (Eds); Austin, TX: Cognitive Science Society: 1326–1331.
- Kopp, S., & Bergmann, K. (2013). Automatic and strategic alignment of coverbal gestures in dialogue. Alignment in Communication: Towards a New Theory of Communication.
- Mol, L., Krahmer, E., Maes, A., & Swerts, M. (2012). Adaptation in gesture: Converging hands or converging minds?. Journal of Memory and Language, 66(1), 249-264.
- Semin, G. R., & Cacioppo, J. T. (2008). Grounding social cognition:
 Synchronization, entrainment, and coordination. in G.R. Semin & E.R. Smith
 (Eds.), Embodied grounding: Social, cognitive, affective, and neuroscientific
 approaches (pp. 119–147). New York: Cambridge University Press.
- Traum, D. R., & Heeman, P. A. (1997). Utterance units in spoken dialogue. In Dialogue processing in spoken language systems (pp. 125-140). Springer Berlin Heidelberg.

Additional literature

- Bavelas, J. B., Chovil, N., Lawrie, D. A., & Wade, A. (1992). Interactive gestures. Discourse Processes, 15(4), 469-489.
- Karpiński, M., & Jarmołowicz-Nowikow, E. (2010, May). Prosodic and Gestural Features of Phrase-internal Disfluencies in Polish Spontaneous Utterances. In Proceedings of Speech Prosody 2010 Conference, Chicago.
- Lücking, A., Bergmann, K., Hahn, F., Kopp, S., & Rieser, H. (2010). The Bielefeld speech and gesture alignment corpus (SaGA).
- Malisz, Z., & Karpiński, M. (2010, May). Multimodal aspects of positive and negative responses in Polish task-oriented dialogues. In Speech Prosody 2010-Fifth International Conference.
- Pickering, M. J., & Garrod, S. (2004). Toward a mechanistic psychology of dialogue. Behavioral and brain sciences, 27(2), 169-189.
- Witten, I. H., Frank, E., & Hall, M. A. (2011). Data Mining: Practical Machine Learning Tools and Techniques: Practical Machine Learning Tools and Techniques. Elsevier.